Backoff Point-Of-Sale Malware alert

RusliRusli Posts: 997 Adventurer

https://www.us-cert.gov/ncas/alerts/TA14-212A

 

Alert (TA14-212A)
Backoff Point-of-Sale Malware
Original release date: July 31, 2014 | Last revised: August 22, 2014

Systems Affected

Point-of-Sale Systems

 
Overview

This advisory was prepared in collaboration with the National Cybersecurity and Communications Integration Center (NCCIC), United States Secret Service (USSS), Financial Sector Information Sharing and Analysis Center (FS-ISAC), and Trustwave Spiderlabs, a trusted partner under contract with the USSS.  The purpose of this release is to provide relevant and actionable technical indicators for network defense against the PoS malware dubbed "Backoff" which has been discovered exploiting businesses' administrator accounts remotely and exfiltrating consumer payment data.

Over the past year, the Secret Service has responded to network intrusions at numerous businesses throughout the United States that have been impacted by the “Backoff” malware. Seven PoS system providers/vendors have confirmed that they have had multiple clients affected. Reporting continues on additional compromised locations, involving private sector entities of all sizes, and the Secret Service currently estimates that over 1,000 U.S. businesses are affected.

Recent investigations revealed that malicious actors are using publicly available tools to locate businesses that use remote desktop applications. Remote desktop solutions like Microsoft's Remote Desktop [1], Apple Remote Desktop [2], Chrome Remote Desktop [3], Splashtop 2 [4], Pulseway [5] and LogMeIn [6] offer the convenience and efficiency of connecting to a computer from a remote location. Once these applications are located, the suspects attempted to brute force the login feature of the remote desktop solution. After gaining access to what was often administrator or privileged access accounts, the suspects were then able to deploy the point-of-sale (PoS) malware and subsequently exfiltrate consumer payment data via an encrypted POST request.

Organizations that believe they have been impacted should contact their local Secret Service field office and may contact the NCCIC for additional information.
Description

“Backoff” is a family of PoS malware and has been discovered recently. The malware family has been witnessed on at least three separate forensic investigations. Researchers have identified three primary variants to the “Backoff” malware including 1.4, 1.55 (“backoff”, “goo”, “MAY”, “net”), and 1.56 (“LAST”).

These variations have been seen as far back as October 2013 and continue to operate as of July 2014. In total, the malware typically consists of the following four capabilities. An exception is the earliest witnessed variant (1.4) which does not include keylogging functionality. Additionally, 1.55 ‘net’ removed the explorer.exe injection component:

    Scraping memory for track data
    Logging keystrokes
    Command & control (C2) communication
    Injecting malicious stub into explorer.exe

The malicious stub that is injected into explorer.exe is responsible for persistence in the event the malicious executable crashes or is forcefully stopped. The malware is responsible for scraping memory from running processes on the victim machine and searching for track data. Keylogging functionality is also present in most recent variants of “Backoff”. Additionally, the malware has a C2 component that is responsible for uploading discovered data, updating the malware, downloading/executing further malware, and uninstalling the malware.

Variants

Based on compiled timestamps and versioning information witnessed in the C2 HTTP POST requests, “Backoff” variants were analyzed over a seven month period. The five variants witnessed in the “Backoff” malware family have notable modifications, to include:

1.55 “backoff”

    Added Local.dat temporary storage for discovered track data
    Added keylogging functionality
    Added “gr” POST parameter to include variant name
    Added ability to exfiltrate keylog data
    Supports multiple exfiltration domains
    Changed install path
    Changed User-Agent

1.55 “goo”

    Attempts to remove prior version of malware
    Uses 8.8.8.8 as resolver

1.55 “MAY”

    No significant updates other than changes to the URI and version name

1.55 “net”

    Removed the explorer.exe injection component

1.56 “LAST”

    Re-added the explorer.exe injection component
    Support for multiple domain/URI/port configurations
    Modified code responsible for creating exfiltration thread(s)
    Added persistence techniques

Command & Control Communication

All C2 communication for “Backoff” takes place via HTTP POST requests. A number of POST parameters are included when this malware makes a request to the C&C server.

    op : Static value of ‘1’
    id : randomly generated 7 character string
    ui : Victim username/hostname
    wv : Version of Microsoft Windows
    gr (Not seen in version 1.4) : Malware-specific identifier
    bv : Malware version
    data (optional) : Base64-encoded/RC4-encrypted data

The ‘id’ parameter is stored in the following location, to ensure it is consistent across requests:

    HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

If this key doesn’t exist, the string will be generated and stored. Data is encrypted using RC4 prior to being encoded with Base64. The password for RC4 is generated from the ‘id’ parameter, a static string of ‘jhgtsd7fjmytkr’, and the ‘ui’ parameter. These values are concatenated together and then hashed using the MD5 algorithm to form the RC4 password. In the above example, the RC4 password would be ‘56E15A1B3CB7116CAB0268AC8A2CD943 (The MD5 hash of ‘vxeyHkSjhgtsd7fjmytkrJosh @ PC123456).

File Indicators:

The following is a list of the Indicators of Compromise (IOCs) that should be added to the network security to search to see if these indicators are on their network.

1.4

Packed MD5: 927AE15DBF549BD60EDCDEAFB49B829E

Unpacked MD5: 6A0E49C5E332DF3AF78823CA4A655AE8

Install Path: %APPDATA%\AdobeFlashPlayer\mswinsvc.exe

Mutexes:

uhYtntr56uisGst

uyhnJmkuTgD

Files Written:

%APPDATA%\mskrnl

%APPDATA%\winserv.exe

%APPDATA%\AdobeFlashPlayer\mswinsvc.exe

Static String (POST Request): zXqW9JdWLM4urgjRkX

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent: Mozilla/4.0

URI(s): /aircanada/dark.php

1.55 “backoff”

Packed MD5: F5B4786C28CCF43E569CB21A6122A97E

Unpacked MD5: CA4D58C61D463F35576C58F25916F258

Install Path: %APPDATA%\AdobeFlashPlayer\mswinhost.exe

Mutexes:

Undsa8301nskal

uyhnJmkuTgD

Files Written:

%APPDATA%\mskrnl

%APPDATA%\winserv.exe

%APPDATA%\AdobeFlashPlayer\mswinhost.exe

%APPDATA%\AdobeFlashPlayer\Local.dat

%APPDATA%\AdobeFlashPlayer\Log.txt

Static String (POST Request): ihasd3jasdhkas

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101 Firefox/24.0

URI(s): /aero2/fly.php

1.55 “goo”

Pa  cked MD5: 17E1173F6FC7E920405F8DBDE8C9ECAC

Unpacked MD5: D397D2CC9DE41FB5B5D897D1E665C549

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windows/updcheck.php

1.55 “MAY”

Packed MD5: 21E61EB9F5C1E1226F9D69CBFD1BF61B

Unpacked MD5: CA608E7996DED0E5009DB6CC54E08749

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windowsxp/updcheck.php

1.55 “net”

Packed MD5: 0607CE9793EEA0A42819957528D92B02

Unpacked MD5: 5C1474EA275A05A2668B823D055858D9

Install Path: %APPDATA%\AdobeFlashPlayer\mswinhost.exe

Mutexes:

nUndsa8301nskal

Files Written:

%APPDATA%\AdobeFlashPlayer\mswinhost.exe

%APPDATA%\AdobeFlashPlayer\Local.dat

%APPDATA%\AdobeFlashPlayer\Log.txt

Static String (POST Request): ihasd3jasdhkas9

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

User-Agent:

URI(s): /windowsxp/updcheck.php

1.56 “LAST”

Packed MD5: 12C9C0BC18FDF98189457A9D112EEBFC

Unpacked MD5: 205947B57D41145B857DE18E43EFB794

Install Path: %APPDATA%\OracleJava\javaw.exe

Mutexes:

nUndsa8301nskal

nuyhnJmkuTgD

Files Written:

%APPDATA%\nsskrnl

%APPDATA%\winserv.exe

%APPDATA%\OracleJava\javaw.exe

%APPDATA%\OracleJava\Local.dat

%APPDATA%\OracleJava\Log.txt

Static String (POST Request): jhgtsd7fjmytkr

Registry Keys:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\identifier

HKCU\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

HKLM\ SOFTWARE \Microsoft\Windows\CurrentVersion\Run\Windows NT Service

HKCU\SOFTWARE\\Microsoft\Active Setup\Installed Components\{B3DB0D62-B481-4929-888B-49F426C1A136}\StubPath

HKLM\SOFTWARE\\Microsoft\Active Setup\Installed Components\{B3DB0D62-B481-4929-888B-49F426C1A136}\StubPath

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101 Firefox/24.0

URI(s):  /windebug/updcheck.php
Impact

The impact of a compromised PoS system can affect both the businesses and consumer by exposing customer data such as names, mailing addresses, credit/debit card numbers, phone numbers, and e-mail addresses to criminal elements. These breaches can impact a business’ brand and reputation, while consumers’ information can be used to make fraudulent purchases or risk compromise of bank accounts. It is critical to safeguard your corporate networks and web servers to prevent any unnecessary exposure to compromise or to mitigate any damage that could be occurring now.
Solution

At the time this advisory is released, the variants of the “Backoff’ malware family are largely undetected by anti-virus (AV) vendors. However, shortly following the publication of this technical analysis, AV companies will quickly begin detecting the existing variants. It’s important to maintain up‐to‐date AV signatures and engines as new threats such as this are continually being added to your AV solution. Pending AV detection of the malware variants, network defenders can apply indicators of compromise (IOC) to a variety of prevention and detection strategies.[7],[8],[9] IOCs can be found above.

The forensic investigations of compromises of retail IT/payment networks indicate that the network compromises allowed the introduction of memory scraping malware to the payment terminals. Information security professionals recommend a defense in depth approach to mitigating risk to retail payment systems. While some of the risk mitigation recommendations are general in nature, the following strategies provide an approach to minimize the possibility of an attack and mitigate the risk of data compromise:

Remote Desktop Access

    Configure the account lockout settings to lock a user account after a period of time or a specified number of failed login attempts. This prevents unlimited unauthorized attempts to login whether from an unauthorized user or via automated attack types like brute force.[10]
    Limit the number of users and workstation who can log in using Remote Desktop.
    Use firewalls (both software and hardware where available) to restrict access to remote desktop listening ports (default is TCP 3389).[11]
    Change the default Remote Desktop listening port.
    Define complex password parameters. Configuring an expiration time and password length and complexity can decrease the amount of time in which a successful attack can occur.[12]
    Require two-factor authentication (2FA) for remote desktop access.[13]
    Install a Remote Desktop Gateway to restrict access.[14]
    Add an extra layer of authentication and encryption by tunneling your Remote Desktop through IPSec, SSH or SSL.[15],[16]
    Require 2FA when accessing payment processing networks. Even if a virtual private network is used, it is important that 2FA is implemented to help mitigate keylogger or credential dumping attacks.
    Limit administrative privileges for users and applications.
    Periodically review systems (local and domain controllers) for unknown and dormant users.

Network Security

    Review firewall configurations and ensure that only allowed ports, services and Internet protocol (IP) addresses are communicating with your network. This is especially critical for outbound (e.g., egress) firewall rules in which compromised entities allow ports to communicate to any IP address on the Internet. Hackers leverage this configuration to exfiltrate data to their IP addresses.
    Segregate payment processing networks from other networks.
    Apply access control lists (ACLs) on the router configuration to limit unauthorized traffic to payment processing networks.
    Create strict ACLs segmenting public-facing systems and back-end database systems that house payment card data.
    Implement data leakage prevention/detection tools to detect and help prevent data exfiltration.
    Implement tools to detect anomalous network traffic and anomalous behavior by legitimate users (compromised credentials).

Cash Register and PoS Security

    Implement hardware-based point-to-point encryption. It is recommended that EMV-enabled PIN entry devices or other credit-only accepting devices have Secure Reading and Exchange of Data (SRED) capabilities. SRED-approved devices can be found at the Payment Card Industry Security Standards website.
    Install Payment Application Data Security Standard-compliant payment applications.
    Deploy the latest version of an operating system and ensure it is up to date with security patches, anti-virus software, file integrity monitoring and a host-based intrusion-detection system.
    Assign a strong password to security solutions to prevent application modification. Use two-factor authentication (2FA) where feasible.
    Perform a binary or checksum comparison to ensure unauthorized files are not installed.
    Ensure any automatic updates from third parties are validated. This means performing a checksum comparison on the updates prior to deploying them on PoS systems. It is recommended that merchants work with their PoS vendors to obtain signatures and hash values to perform this checksum validation.
    Disable unnecessary ports and services, null sessions, default users and guests.
    Enable logging of events and make sure there is a process to monitor logs on a daily basis.
    Implement least privileges and ACLs on users and applications on the system.

References

    [1] Windows Remote Desktop
    [2] Apple Remote Desktop
    [3] Chrome Remote Desktop
    [4] Splashtop
    [5] Windows Pulseway
    [6] LogMeIn Official Site
    [7] Understanding Indicators of Compromise (IOC)
    [8] Using Indicators of Compromise in Malware Forensics
    [9] Indicators of Compromise: The Key to Early Detection
    [10] Configuring Account Lockout
    [11] Securing Remote Desktop for System Administrators
    [12] Account Lockout and Password Concepts
    [13] NIST Guide to Enterprise Telework and Remote Access Security
    [14] Installing RD Gateway
    [15] Networking and Access Technologies
    [16] Secure RDS Connections with SSL

Revisions

    July, 31 2014 - Initial Release
    August 18, 2014 - Minor revision to remote desktop solutions list
    August 22, 2014 - Changes to the Overview section

Comments

  • RusliRusli Posts: 997 Adventurer

    http://nakedsecurity.sophos.com/2014/08/25/secret-service-says-backoff-malware-hit-1000-businesses-6-tips/

    Secret Service says "Backoff" malware hit 1000 businesses - 6 tips to keep your data safe

    Join thousands of others, and sign up for Naked Security's newsletter
    by John Zorabedian on August 25, 2014 | 9 Comments    

    Filed Under: Data loss, Featured, Malware, Security threats

    US Secret Service says Backoff malware struck 1000 businessesIt now appears that the string of recent data breaches at US retail establishments was not a coincidence, but rather related attacks using the same malicious software kit.

    In a security advisory from the US Secret Service dated 22 August 2014, obtained by the New York Times, the government said the malware known as Backoff has struck more than 1000 US companies since October 2013.

    US government agencies including the Secret Service first publicly warned businesses of the Backoff malware in a bulletin on 31 July 2014, but only now is the extent of the malware's reach becoming clear.

    Backoff is a type of malware called a RAM scraper, because it steals clear-text payment card data out of RAM (Random Access Memory) on point-of-sale (PoS) computers.

    The recent Secret Service bulletin doesn't name any of the impacted businesses, but does say that seven PoS system providers have confirmed that they have had "multiple clients" infected with the Backoff malware:

        Over the past year, the Secret Service has responded to network intrusions at numerous businesses throughout the United States that have been impacted by the “Backoff” malware. Seven PoS system providers/vendors have confirmed that they have had multiple clients affected. Reporting continues on additional compromised locations, involving private sector entities of all sizes, and the Secret Service currently estimates that over 1000 U.S. businesses are affected.

    Even though the report doesn't name any victims, you may have read speculation that Backoff is the same malware that turned up in Target's breach, or that it is the malware behind recently-announced breaches such as the one at UPS Stores.

    We're not aware of any evidence to support either of those theories, but we're not convinced that it really matters, anyway.

    Your security goal should ideally be a defense-in-depth strategy that helps to protect against any and all malware, as well as against a range of other potential security problems.
    Backoff - what it does

    The cybercrooks behind the Backoff malware seem to have focused on poorly-secured systems, breaking in by means of remote access applications such as Microsoft Remote Desktop (RDP), Apple Remote Desktop and LogMeIn.

    According to the US Computer Emergency Readiness Team (US-CERT), the criminals use publicly available tools to locate businesses that use these remote desktop tools and then simply guess at the necessary passwords to gain administrator access.

    Then the criminals are able to deploy the Backoff malware, which scrapes the PoS system's memory for payment data and sneaks it out of the infected network hidden in an encrypted web upload (an HTTP POST request) to servers controlled by the crooks.

    Additionally, Backoff has a general purpose command-and-control (C&C) function that can also update the malware, uninstall it, or download yet more malware.

    US-CERT's alert says researchers have identified three primary variants of Backoff, which have been around since as far back as October 2013.

    Since that time, Backoff has added keylogging functionality, which it can use to steal keystrokes such as passwords.
    How to stay safe

    US-CERT has updated its alert to advise businesses on ways to mitigate Backoff.

    Naked Security writer and Sophos Senior Security Advisor Chester Wisniewski has some further advice:

        Application control and network monitoring can help detect the presence of connections to these systems as well. Careful monitoring should be able to detect or prevent unexpected or unauthorized remote connection attempts.

    Tips for businesses

        Segregate your networks. Shield your PoS computers from the all-purpose computers in your business.
        Limit the applications allowed on your PoS computers. Consider using Application Control to be notified if someone or something tries to install risky software on a cash register.
        If your anti-virus has a Live Protection service, make sure it is on and working. With a suitable firewall rule, your PoS computers can benefit from almost-instant updates when new threats emerge.
        Don't ignore warning signs. Target failed to react to reports from its own IT support center that would probably have led to much earlier detection and remediation of its massive malware infestation.
        If your anti-virus has a Host Intrusion Prevention System (HIPS), use it on your PoS computers. Software behavior on a PoS system ought not to change without warning, so deviations are always worth blocking and investigating. (See also #2 and #4.)
        Review your remote access policies and procedures. Consider requiring the use of a Virtual Private Network (VPN) with two-factor authentication (2FA) support.


    (Audio player above not working? Download the MP3, or listen on Soundcloud.)
    Tips for consumers

    As for the rest of us - the consumers - we may not know for some time which businesses were victimized by the Backoff gang.

    Our advice is to keep careful track of your bank account and credit card statements and watch for suspicious charges.

    And next time you go to swipe your card, you might want to think about using checks or cash instead of plastic.

    Image of credit card security courtesy of Shutterstock.

    Tags: Backoff, credit card data, data breach, PoS malware, Supervalu, target, The UPS Store, US Secret Service, US-CERT

This discussion has been closed.